A Top-k and Clustering with Noisy Comparisons
نویسندگان
چکیده
We study the problems of max/top-k and clustering when the comparison operations may be performed by oracles whose answer may be erroneous. Comparisons may either be of type or of value: given two data elements, the answer to a type comparison is “yes” if the elements have the same type and therefore belong to the same group (cluster); the answer to a value comparison orders the two data elements. We give efficient algorithms that are guaranteed to achieve correct results with high probability, analyze the cost of these algorithms in terms of the total number of comparisons (i.e., using a fixedcost model), and show that they are essentially the best possible. We also show that fewer comparisons are needed when values and types are correlated, or when the error model is one in which the error decreases as the distance between the two elements in the sorted order increases. Finally, we examine another important class of cost functions, concave functions, which balances the number of rounds of interaction with the oracle with the number of questions asked of the oracle. Results of this paper form an important first step in providing a formal basis for max/top-k and clustering queries in crowd-sourcing applications, i.e. when the oracle is implemented using the crowd. We explain what simplifying assumptions are made in the analysis, what results carry to a generalized crowd-sourcing setting, and what extensions are required to support a full fledged model.
منابع مشابه
خوشهبندی خودکار دادههای مختلط با استفاده از الگوریتم ژنتیک
In the real world clustering problems, it is often encountered to perform cluster analysis on data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. In addition, traditional methods, for example, the K-means algorithm, usually ask the user to provide the number of clusters. In this...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملActive Learning for Top-K Rank Aggregation from Noisy Comparisons
We explore an active top-K ranking problem based on pairwise comparisons that are collected possibly in a sequential manner as per our design choice. We consider two settings: (1) top-K sorting in which the goal is to recover the top-K items in order out of n items; (2) top-K partitioning where only the set of top-K items is desired. Under a fairly general model which subsumes as special cases ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014